记录下可以用的中序遍历方法
方法1:
vector InOrderTraverse(TreeNode * root) //中序遍历 { vector ans; TreeNode* p; vectorStack; Stack.push_back(root); while(!Stack.empty()) { while((p = Stack.back()) != NULL) Stack.push_back(p->left); Stack.pop_back(); if(!Stack.empty()) { p = Stack.back(); Stack.pop_back(); ans.push_back(p->val); Stack.push_back(p->right); } } return ans; }
方法2:
vector inorderTraversal(TreeNode *root) { vector vector; stackstack; TreeNode *pCurrent = root; while(!stack.empty() || pCurrent) { if(pCurrent) { stack.push(pCurrent); pCurrent = pCurrent->left; } else { TreeNode *pNode = stack.top(); vector.push_back(pNode->val); stack.pop(); pCurrent = pNode->right; } } return vector; }
我按照自己的思路写的,调了很多遍。关键是右子树弹出时候的逻辑混乱
vector inorderTraversal(TreeNode *root) { vector ans; vectorv; TreeNode * p; if(root == NULL) return ans; v.push_back(root); while(!v.empty()) { p = v.back(); while(p->left != NULL) //找到最左边的 { v.push_back(p->left); p = p->left; } ans.push_back(p->val); //压入数据 v.pop_back(); while(p->right == NULL) //右子树处理 如果当前的右子树是空的 那么需要弹出v中栈尾的数值 { if(!v.empty()) { p = v.back(); ans.push_back(p->val); v.pop_back(); } else { break; } } if(p->right != NULL) { v.push_back(p->right); } } return ans; }
还有不需要栈的方法,利用了线索二叉树的概念,空间复杂度O(1)